ARTICLES OF ASSOCIATION OF

Beijing Jingneng Clean Energy Co., Limited 北京京能清潔能源電力股份有限公司

 $(I c. \iota. ated \iota e Pe. \iota e', Re\iota b c. f C a \iota . \iota ed ab \iota.)$

الا در البنان محمد مربق مربق من الله المعادية من معرفيات المحمد المحرفال مربق من محمد المربق محمد المربق من مح محمد محمد المربق محمد مربق مربق من الله المحمد محمد محمد المحمد محمد المحمد المحمد مربق محمد المربق محمد المحمد المحمد المربق محمد محمد محمد محمد محمد محمد المحمد محمد المحمد محمد المحمد المحمد المحمد المحمد المحمد محمد محم

Contents

· ,· 1		1
· , · 2		3
· , · 3		4
' , [•] 4		8
· , · 5	$\mathbf{A}_{\mathbf{x}} = \mathbf{A}_{\mathbf{x}} $	12
· , · 6	A second a second a second sec	13
· , · 7		17
· , · · 8		22
X ., 1		22
2		24
8		26
8		28
8	in state (Ω in plase in state (Ω in plase in state)	33
· ,· 9		35
, , 1 0	• · · · · · · · · · · · · · · · · · · ·	38
ʻ, ¹¹		39
X ., 1		39
2		41
3	. <i>t</i>	42
· , · 12		48
· , · 13		50
') ^{· 14}		52

· , · 15		53
		53
2	. Contraction of the second	53
· ,. 16		56
· , 17		63
, 18	$A_{j_1,j_2,j_3}, \dots, A_{j_1,j_2,j_1,j_3}, \dots, A_{j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},\dots, A_{j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},\dots, A_{j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},\dots, A_{j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},\dots, A_{j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},j_{n-1},\dots, A_{j_{n-1},j_{$	66
, 19	$\sum_{i=1}^{n} \sum_{\mathbf{x} \in \mathbf{x}^{n}, \mathbf{x}^{n}} \sum_{i=1}^{n} \sum_{\mathbf{x} \in \mathbf{x}^{n}} \sum_{i=1}^{n} \sum_{\mathbf{x} \in \mathbf{x}^{n}} \sum_{i=1}^{n} \sum_{\mathbf{x} \in \mathbf{x}^{n}} \sum_{i=1}^{n} \sum_{i=1}^{n$	69
X 1	$\mathcal{L} = \{ \mathcal{L} : \mathcal{L} : \mathcal{L} \in \mathcal{L}^{\infty} \mathcal{L}^{\infty} \mathcal{L}^{\infty} \}$	69
2	$\mathbf{x} \cdots \mathbf{f} = \mathbf{x} \cdots \mathbf{f} = \mathbf{x} + \cdots + \mathbf{f} = \mathbf{x} + x$	70
, 20	$\mathbf{A}_{\mathbf{a}}$	72
· . 21	· • • •	73
, 22		75
, 23		76

Chapter 1 General

Article 1

Article 2

A, (1, 1, 2, 3, 4), (2, 1, 2, 3), (2, 1,

Article 3

According to $\mathbf{M}_{1}^{\mathbf{A}} = \mathbf{M}_{1}^{\mathbf{A}} = \mathbf{M}_{1}^{\mathbf{A}}$ ···· 100028 .: 010-87407188/87407189 .: 010-87407187

Article 5

Article 6

 $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{y}_2, \mathbf{x}_2, \mathbf{x}_1, \mathbf{y}_2, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x$

Article 7

Appending the second se

Article 8

Article 9

 $(\cdots, (x_1, \dots, (x_n, (x_n, (x_1, \dots, (x_{n+1}, \dots, (x_{n+1}$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}_{k} & A_{k} \end{array}_{k} \end{array}_{k} & A_{k} \end{array}_{k} \cdots A_{k} \end{array}_{k} & A_{k} \end{array}_{k} \cdots A_{k} \cdots A_{k} \end{array}_{k} \cdots A_{k} \cdots A_$

 $\mathbf{A}_{\mathbf{x}_{1}} = \mathbf{A}_{\mathbf{x}_{2}} + \mathbf{A}_{\mathbf{x}$

Article 10

المحمد المحم المحمد الم المحمد المحم المحمد الم المحمد المحم المحمد المحمد المحمد المحمد المحمد المحمد المحمد ال

Article 11

ار با الاستان المراجع من المراجع من المراجع من المراجع من المراجع المراجع من المراجع من المراجع المراجع المراجع اللاظ المراجع من المراجع المراجع م المراطع المراجع من المراجع المراجع

Article 12

Chapter 2 Operational Objectives and Scope

Article 13

Article 14

Chapter 3 Shares, Registered Capital and Transfer of Shares

Article 15

en en presenta en la companya de la La companya de la comp

Article 16

 $\begin{array}{c} \mathbf{A}_{\mathbf{I}} = \mathbf{A}_{\mathbf{I$

Article 17

ne βreese (β. 1997). Ne βreese (β. 1997). Ne βreese (β. 1997).

 $= \{ \mathbf{x}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_4, \mathbf{y}_4,$

Article 18

Norman y an an sector de la sector a sector de la sector de Norman a la sector de Norman a la sector de la sector de

Article 19

en al la servicie de la serv la servicie de la servicie de

, and a set of the state of t

 $\begin{array}{c} \mathbf{A}_{\mathbf{y}} = \left\{ \left\{ \mathbf{x}_{\mathbf{y}} \in \left\{ \mathbf{x}_{\mathbf{y}}$

Article 20

 $\begin{array}{c} \mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{A}} \\ \mathbf{A}_{\mathbf{A}} = \mathbf{A}_{\mathbf{$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 21

= 2.721%

 $(\mathbf{z}_{1}, \mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{1}, \mathbf{z}_{2}, \mathbf{z}_{1}, \mathbf{z$

Article 22

Article 23

 $\begin{array}{c} \mathbf{A}_{\mathbf{x}} = \mathbf{v}_{\mathbf{y}_{1}} + \mathbf{v}_{\mathbf{x}_{2}} + \mathbf{v}_{\mathbf{$

in a series provide a series of series of a series of the series of th

Article 24

Article 25

8,244,508,144.

Article 27

 $(1, \dots, 1, \dots, 1)$

Article 28

 $(i_1, \ldots, i_n) = (i_1, \ldots, i_n) + (i_1, \ldots, i_n$

Article 29

n na serie a fan de angeler ang In terreter angeler ang

Chapter 4 Increase, Reduction and Repurchase of Shares

Article 30

the second se

- (1) $\mathbf{I}_{\mathbf{I}}$, $\mathbf{I}_{\mathbf{I}}$,
- (2) $\ldots 1 + \ldots + \ldots + \ldots + \ldots + \ldots ;$
- $(3) \qquad (3) \qquad (4) \qquad (4)$
- $(5) \qquad \mathbf{v}_{1} \qquad \mathbf{v}_{2} \qquad \mathbf{v}_{1} \qquad \mathbf{v}_{2} \qquad \mathbf{w}_{1} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{1} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{1} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{1} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{2} \qquad \mathbf{w}_{1} \qquad \mathbf{w}_{2} \qquad \mathbf{w$

 $\begin{array}{c} & \left| \begin{array}{c} \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{2} \\ \mathbf{w}_{1} \\ \mathbf{w}$

Article 31

Article 32

the second se

and the state of the product of the state of

- (1) $\ldots_{||}$, $\ldots_{||}$, $\ldots_{||}$, $\ldots_{||}$, $\ldots_{||}$, $\ldots_{||}$, $\ldots_{||}$;
- (2) $(2) \qquad (2) \qquad$
- $(3) \qquad (1,1), ($

- (7) \mathbf{v}_{1} , \mathbf{v}_{2} , \mathbf{v}_{3} , \mathbf{w}_{1} , \mathbf{w}_{2} , \mathbf{v}_{3} , \mathbf{w}_{1} , \mathbf{w}_{2} , \mathbf{w}_{2} , \mathbf{w}_{1} , \mathbf{w}_{2} , \mathbf{w}_{2} , \mathbf{w}_{1} , \mathbf{w}_{2} , \mathbf{w}_{2} , \mathbf{w}_{2} , \mathbf{w}_{1} , \mathbf{w}_{2} ,

Article 34

د محمد معرف محمد میں ایک میں ایک مرد محمد میں محمد میں ایک محمد می محمد ایک محمد محمد محمد محمد محمد محمد محمد میں محمد میں ایک محمد میں ایک محمد میں ایک محمد میں ایک محمد محمد م

- $(1) \qquad \mathbf{k}_{\mathbf{k}}, \mathbf{r}_{\mathbf{k}}, \dots, \mathbf{r}_{\mathbf{k$
- $(2) \quad \textcircled{\mathbf{G}}_{\mathbf{1}}^{\mathbf{1}} \quad (\mathbf{1}, \mathbf{1}, \mathbf{1$
- $(3) \quad \textcircled{A}_{1} \quad (1, 2, \dots, n) \quad (1$

, en la servició de la substance de la servició de la

Article 36

Article 37

and the second second second second states and the second s

 $(x_1, \dots, x_n, \dots, x_n) = (x_1, \dots, x_n, \dots, x_n) + (x_1, \dots, x_n$

- (1) $(1, \dots, k, \dots,$
- (2) $(2) \qquad (2) \qquad (2) \qquad (2) \qquad (3) \qquad (2) \qquad (3) \qquad$

 - 2. $\begin{array}{c} 2 \\ 2$
- $(3) \qquad (3) \qquad (4) \qquad (5) \qquad (5)$

 - 2. A set set and a set of the set
- $(4) \quad \mathbf{A}_{\mathbf{x}} = \mathbf{A}_{\mathbf{$

Chapter 5 Financial Assistance for Purchase of Company Shares

Article 39

 $(\mathbf{A}_{1}, \mathbf{A}_{2}, \mathbf{A}_{3}, \mathbf{A$

Article 40

n versen versen versen versen versen versen = versen v Versen ve

- (1) 🕅 .;
- (2) $\mathbf{\overline{M}} = \sum_{\mathbf{x} \in \mathbf{Y}} \left(\sum_{i=1}^{n} \frac{t_{i} \cdot \mathbf{x}}{t_{i}} + \frac{t_{i} \cdot \mathbf{x}}{t_{i}}$

Article 41

- $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{x}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y$
- (2) $\blacksquare \mathbf{1}_{1} \mathbf{t}_{1} \mathbf{t}_{1} \mathbf{t}_{1} \mathbf{t}_{2} \mathbf{t}_{3} \mathbf{t}_{4} \mathbf{t}_{5} \mathbf{t$

- $(4) \quad \bigotimes_{i=1}^{n} (1, \ldots, \ldots, 1, \ldots,$
- (5) $(f_{1}, f_{2}, f$
- (6) $(f_{1}, \dots, f_{k}, \dots$

Chapter 6 Share Certificates and Register of Shareholders

Article 42

 $= \frac{1}{2} \left[\frac{1}{2}$

Article 43

Article 44

الله من المراجع المراجع المراجع من المراجع المراجع المراجع من المراجع من المراجع من المراجع من المراجع المراجع مراجع من المراجع المراجع من من من من المراجع من المراجع المراجع من المراجع من المراجع من من المراجع من المراجع م

n en stran en ser de ser de ser al ser en de ser en de ser de sér de sér de ser en anter en anter en de ser en Ner ⊠in ∭in ∭in in ser en internet

Article 45

 $\frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} + \frac{1}{2} \right] = \frac{1}{2} \left[\frac{1}{2} + \frac{1}{2} +$

ا الارام المالية المالي المالية المالية

Article 46

- $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x}_4, \mathbf{x}_5, \mathbf{x$
- المحاو المي 🖬 المارية المحاودين المحاد من المحاد محاد محاد محاد محاد محاد محاد محاد
- $(1) \quad A \quad \mathsf{I}_{\mathbf{x}} \quad \mathsf{k}_{\mathbf{y}} \quad \mathsf{v}_{\mathbf{x}} \quad \mathsf{k}_{\mathbf{y}} \quad \mathsf{v}_{\mathbf{x}} \quad \mathsf{v}$
- $(3) \quad (3) \quad (3)$

Article 47

ne stand stand server and stand server the standard standard in the set standard standard by the server the set In the piper of Merican standard by the standard standard standard by the standard standard standard by the stand

 $\mathbf{A}_{[1,2]} = \mathbf{A}_{[1,2]} = \mathbf{A}$

- $(3) \qquad (1, \ldots, 1, \ldots, 1,$

- $(7) \quad \mathbf{A}_{\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}_{3$

 $\begin{array}{c} \mathbf{v}_{1}^{T} \cdot \mathbf{q}^{T} \cdot \mathbf{v}_{1}^{T} \\ = \mathbf{v}_{1}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{1}^{T} \cdot \mathbf{v}_{2}^{T} \\ = \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \\ = \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \\ = \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \\ = \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \\ = \mathbf{v}_{2}^{T} \cdot \mathbf{v}_{2}^{T} \\ = \mathbf{v}_{2}^{T} \cdot \mathbf{v$

Article 49

 $\begin{array}{c} & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & &$

Article 50

ان من محمد المرحمة المرحمة المرحمة من المرحمة محمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد المحمد الم المحمد المحمد

As presented produced of the second state of the second state of the second second state of the second sta

Article 52

 $\begin{array}{c} A_{j,1},\ldots,\ldots,a_{i-1},\ldots,a_{i-1$

, γαα αντίζει του πολού του βρηγού του βητου του προστού του αυτορούτελου βητου του κολημού του βηταλικά. Το βαλαβαίζει το πολομού του βρηγού του βητου του και προστού του και βουστού του κατά τη του βηταβάζα και βουσ

- (2) \ldots , \ldots , \ldots

الان مي الدانية الميري الميري الذي الانتخاب من المن الميرين الميرين الميرين الميرين الميرين الميرين الميرين ال الميري المالية الميرين الميري الميري الميري الميرين الميرين الميرين الميرين الميرين الميرين الميرين الميرين المي الميري الميرين الميري الميري الميري الميري الميري الميرين الميرين الميرين الميرين الميرين الميرين الميرين المير

- (5) $(1) \quad (2) \quad$

Article 54

المراجع محمد المراجع ال مراجع المراجع ا

Chapter 7 Rights and Obligations of Shareholders

Article 55

 $\sum_{i=1}^{n} || (x_i + x_i) - (x_i + x_i) - || (x_i + x_i) + (x_i + x_i) - || (x_i + x_i) - || (x_i + x_i) + (x_i + x_i) - || (x_i + x_i) + ($

A set to see the set of the set o

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & &$

(1) \ldots , \ldots , (

- (1) $(1) \quad (1) \quad$
- (2) $(2) \qquad (2) \qquad$

Article 56

- $(4) \qquad (4) \qquad (4)$
- - 1. \ldots , A_{n} , $A_$
 - - $(\mathbf{x}) \quad \mathbf{y} \leftarrow \mathbf{y} \leftarrow \mathbf{x} \leftarrow \mathbf{x} \leftarrow \mathbf{x} \leftarrow \mathbf{x} \leftarrow \mathbf{y} \leftarrow \mathbf{y}$

- $t := -\mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{2} \end{bmatrix} = \mathbf{1} \begin{bmatrix} \mathbf{1}$
- $(\underline{\mathbf{u}}) \quad \mathbf{v} = \mathbf{$
- $(1) \quad (1) \quad (1)$
- $(c_{\lambda}) \quad \forall \quad \dots \quad j \quad \dots \quad i \quad t_{\lambda} \circ t_{-\lambda} \circ \dots \circ j_{-\lambda} \circ \dots \circ j_{-$
- $(a_{11}) \cdots a_{n+1} = a_{n+1} = a_{11} \cdots a_{n+1} \otimes a_{n+1} \cdots a_{n+1} \otimes a_{n+1} \otimes a_{n+1} \cdots a_{n+1} \otimes a_{n+1} \cdots a_{n+1} \otimes a_{n+1} \cdots a_{n+1} \otimes a_{n$

- (6) $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
- $(8) \qquad \qquad \mathbf{A}_{1} = \mathbf$

Article 57

المحية العلي كان تاها المحادثات العلية بالكية بالتان التية بالتانية المحادثات المحادثات المحادثات المحادثات ال المحلي بالكان في محلف المحادثات المحلي التانية المحلية المحلية المحلية المحلية المحلية المحلية المحلية المحلية ا

Article 59

ا جاند و ان العلم بالكان المنظلين كان باند و ان العلم المحد معند العلم العلم العلم المحد معند العلم العلم الع الاهم الحد محيد المالية المحمد المحمد المحد المحد المحد العلم العلم العلم المحد العلم المحد العلم المحد المحد ال المحد العلم العلم المحد المحد المحد المحد المحد المحد المحد العلم العلم العلم العلم المحد المحد المحد المحد الم

Article 60

 $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_2, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_1, \mathbf{x$

Article 61

in the second free second second second in the second second second second second second second second second s

 $(4) \qquad \dots \qquad 1 \dots \qquad \lambda_{n} \qquad \lambda_{n} \qquad \lambda_{n} \qquad \dots \qquad \lambda_{n} \qquad$

(5) $\mathbf{v}_{\mathbf{v}} = \mathbf{v}_{\mathbf{v}} + \mathbf{v}_{\mathbf{v}$

A static set is a static set of a static

Article 62

 $(x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) + (x_1, x_2, \dots, x_n) = (x_1, x_2, \dots, x_n) + (x_1, x_1, \dots, x_n) + (x_1, x_1, \dots, x_n) + (x_1, x_1, \dots, x_n) + (x_1, \dots$

 $= \frac{1}{2} \left\{ \frac{1}{2}$

- (1) $\mathbf{a}_{\mathbf{p}_{1}\cdots\mathbf{p}_{n}}^{\mathbf{q}_{1}\cdots\mathbf{q}_{n}}$, $\mathbf{a}_{\mathbf{p}_{1}\cdots\mathbf{q}_{n}}^{\mathbf{q}_{n}\cdots\mathbf{q}_{n}}$, $\mathbf{a}_{\mathbf{p}_{1}\cdots\mathbf{q}_{n}}^{\mathbf{q}_{n}\cdots\mathbf{q}_{n}}$, $\mathbf{a}_{\mathbf{p}_{1}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}}^{\mathbf{q}_{n}\cdots\mathbf{q}_{n}}$, $\mathbf{a}_{\mathbf{p}_{1}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}}^{\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}}$, $\mathbf{a}_{\mathbf{p}_{1}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}}^{\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}\cdots\mathbf{q}_{n}}$
- $(2) \quad A_{j,j} \dots (1 \quad \ell_{k} \dots \dots \ell_{j}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \boxtimes \ell_{k} \dots \dots \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \dots \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k}) \dots (1 \quad \ell_{k} \dots \boxtimes \ell_{k} \dots \vee \ell_{k} \dots$
- $(3) \quad A_{j,j} \dots p \quad (x_{k}, \dots, x_{k}) \dots (x_{k}, \dots, M_{k}) \dots (x_{k}, \dots, M_{k}) \dots (x_{k}) \dots (x_{$

•••• •••••	$\mathbf{W}_{\mathbf{x}}, \mathbf{U}_{\mathbf{x}}, U$
(1)	· · · · · · · · · · · · · · · · · · ·
(2)	.,
(3)	,, i por esta se a
(4)	· · · · · · · · · · · · · · · · · · ·
	Chapter 8 General Meeting

Section 1

- (11) A subscription $\mathbf{A}_{\mathbf{x},\mathbf{y}}$, $\mathbf{A}_{\mathbf{x},\mathbf{y}}$, $\mathbf{A}_{\mathbf{x},\mathbf{y}}$, ;
- (12) $\mathbf{A}_{\mathbf{x}} \otimes \mathbf{A}_{\mathbf{x}} \otimes \mathbf{A}_{\mathbf{x$
- (13) (1
- (14) $\mathbf{G}^{\mathbf{T}}_{\mathbf{r}} \otimes \mathbf{G}^{\mathbf{T}}_{\mathbf{r}} \otimes \mathbf{$
- (15) **(15)**
- (16) **(**16) **(**16) **(**17) **(**1
- (17) $\mathbf{M}_{\mathbf{x}_{1}}^{\mathbf{x}_{1}} \otimes \cdots \otimes \mathbf{M}_{\mathbf{x}_{n}}^{\mathbf{x}_{n}} \otimes \cdots \otimes \mathbf{M}_{\mathbf{x}_{n}}^{\mathbf{x}_{n}} \otimes$

- n en en la martina en la constante en la consta
- (1) A (1, 1) (1, 2) (1,
- (2) $A_{i} = \frac{1}{\sqrt{2}} + \frac{1}$
- $(4) \quad A_{1}, \tau_{1}, \tau_{1}, \ldots, M_{2}, \ldots, \tau_{n}, \tau_$
- (5) $(1, \dots, 1)$ $(1, \dots, 1)$
- (6) $\mathbf{\omega}_{\mathbf{k}} = \mathbf{\omega}_{\mathbf{k}} = \mathbf{\omega}_{\mathbf{k}} + \mathbf{\omega}_{\mathbf{k}$

 $= \left\{ \left\{ \left\{ x_{1}, x_{2}, \dots, x_{n} \right\} \right\} = \left\{ \left\{ x_{2}, \dots, x_{n} \right\} = \left\{ \left\{ x_{1}, \dots, x_{n} \right\} \right\} = \left\{ \left\{ x_{1}, \dots, x_{n} \right\} \right\} = \left\{ \left\{ x_{1}, \dots, x_{n} \right\} = \left\{ x_{n}, \dots, x_{$

Article 67

Article 69

- $(1) \qquad (1) \qquad (1)$

- (5) $(f_1, f_2, \dots, f_n, \dots, f_$
- (6) $\begin{array}{c} \mathbf{A}_{\mathbf{x}_{1}} = \mathbf{A}_{\mathbf{x}_{2}} =$

Article 70

 $\begin{array}{c} \begin{array}{c} \left\langle \cdot,\cdot\right\rangle _{1} \left\langle \cdot,\cdot\right\rangle _{2} \left\langle \cdot,\cdot\right\rangle _{1} \left\langle \cdot,\cdot\right\rangle _{2} \left\langle$

Section 2 Proposing and Convening of General Meeting

Article 71

Article 73

- (1) $\begin{array}{c} (1) \\ (1) \\ (2) \\$

Section 3 Proposals and Notices of General Meeting

Article 75

Article 76

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

, see a serie of the second second

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 77

 $\frac{1}{1} = \frac{1}{1} = \frac{1}$

المحمد المحمد

- (1) <u>, , , , </u> <u>, , </u> <u>, , </u>
- $(3) \qquad (3) \qquad (3)$
- (5) $(1) \quad (1) \quad$
- (6) As t_{1} , t_{2} , t_{3} , t_{4} , t_{2} , t_{3} , t_{4} , $t_{$

Article 79

ال برايخون المربق المنتخر بالحال برجين بين والريان و تعريباً و تعريباً و تعريباً و تعريباً و تداريخ. 1. المربق 12 من المربق و تعريب محمد بين والريان و تعريباً و تعريباً و تعريباً و تعريباً المربق المربق المربق و ت

- (1) $(1, \dots, 1) \rightarrow (1, \dots, 1) \rightarrow$

- (5) $\mathbf{v}_{\mathbf{k}} = \mathbf{v}_{\mathbf{k}} = \mathbf{v}_{\mathbf{k}$

 $[\cdots, \bullet] = [1, \bullet] = [$

Article 80

 $= \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum$

Article 81

 $\begin{array}{c} \mathbf{A} = \left[\mathbf{A} + \left$

Article 82

المراجع بالمرجع من المرجع المرجع المرجع المرجع من المرجع من المرجع المرجع المرجع المرجع المرجع المرجع المرجع ا من مرجع المرجع المرجع

Section 4 Convening General Meeting

Article 83

 $\mathbf{A}_{[1]} \leftarrow \mathbf{A}_{[1]} \leftarrow \mathbf{A}_{[2]} \leftarrow \mathbf{A$

 $\mathbf{A}_{\mathbf{x}_1,\mathbf{x}_2,\mathbf{x}_3,\mathbf{x}_4,\mathbf{x}_3,\mathbf{x}_4,\mathbf$

- South and the second states and the second s
- (1) $(1, \dots, k, \dots,$
- (2) $(\mathbf{x}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1,$
- $(3) \qquad (3) \qquad (4) \qquad (5) \qquad (5)$

As $x t_{x} x^{t} = x^{t} x^{t} x^{t} = x^{t} x$

Article 85

- (1)

- (5) $\begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1} & \mathbf{1} \end{bmatrix} = \begin{bmatrix} \mathbf{1} & \mathbf{1} \\ \mathbf{1}$
- (7) $(7) \qquad (7) \qquad$

المراجع المراجع المراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع المراجع المراجع المراجع المراجع المراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع المراجع والمراجع المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والم

Article 87

Article 88

Article 89

 $\begin{array}{c} \mathbf{A}_{1} = \mathbf{I}_{1} \mathbf{x}_{2} \mathbf{x}_{3} + \cdots + \mathbf{I}_{n} \mathbf{x}_{n} \mathbf{x}_$

Article 90

Article 92

Article 93

Article 94

 $\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{1$

, en en en el presente en el transmer en en en en en el presente en Maria en en el presente el le transmer en e En en en en el presente en el presente en el presente en el presente en Maria en el presente el le transmer en e

Article 96

Article 97

مرد ا^{ال} ∰گرا در مردی الرامی اگرامیاگر) در در مرد در به مرد در رز در لادرمی بر در اگرامی در الرامی در از در گرا در مرد الرامی الرامی الرامی الرامی مرد در به مرد در در برای در لاد در الرامی بر از مرد الرامی

- (1) $(1, \dots, 1, \dots, t, 1, \dots, t, 1, \dots, \dots, 1, \dots, 1, \dots, 1, \dots, \dots, 1, \dots, \dots, 1, \dots, \dots, 1, \dots, \dots, \dots, \dots, \dots, \dots, \dots,$
- $(3) \qquad (3) \qquad (4) \qquad (4)$
- (5) $(5) \quad (5) \quad$
- (7) $\mathbf{v}_{\mathbf{x}} = \mathbf{v}_{\mathbf{x}} + \mathbf{v}_{\mathbf{x$

Article 98

Article 99

من من من المعلم من المعلم من المعلم من المعلم المعلم المعلم من المعلم من المعلم من المعلم من المعلم من المعلم م المعلم من ال المعلم من ال المعلم من ا

Section 5 Voting and Resolutions at General Meetings

Article 100

 $\underbrace{\mathfrak{G}}_{\mathbf{x}_1,\mathbf{y}_1,\mathbf{x}_2,\dots,\mathbf{x}_{n-1}}^{\mathbf{x}_1} \mathbf{x}_1 \mathbf{y}_1 \mathbf{$

∯ress (sectors) and sector (sector) and sector) and s

Article 101

an the sector of the sector sector of the sector of the

Normal and the second s

 $\begin{bmatrix} \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{2}, \mathbf{w}_{2}, \mathbf{w}_{2}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf$

المنافع المنفع المنافع ا المنافع المنفع المنافع ال

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 102

and the state of t

Article 103

Article 104

and the second second

 $A_{1} = \{a_{1}, a_{2}, b_{3}, a_{4}, a_{5}, a_{5}$

Article 106

 $\begin{array}{c} \mathbf{A}_{1} = \left\{ \mathbf{A}_{1}$

Article 107

Article 108

المحمد التاجير بالذي المحمد المحم الأرواب الكل الالالية المحمد المحم المحمد المحمد

Article 109

Article 110

 $\begin{bmatrix} \mathbf{w}_{1} & \mathbf{w}_{2} & \mathbf{w}_{3} & \mathbf{w}_{$

Chapter 9 Special Procedures for Voting at Class Meeting

Article 111

 $\begin{array}{c} & & & \\ & & & & \\ & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ &$

الاستوريان في الناب المانيان المرجوع الأربية الموجوعة (المرجوعة التي المحاولة المرجوعة المرجوعة المحاولة المنافع المحاولة المحاولة المحاولة المحاولة المحاولة المحاولة المحاولة المحاولة ا المسالم المالية المحاولة المحاولة المحاولة (المحاولة المحاولة المحاولة المحاولة المحاولة المحاولة المحاولة المح

Article 112

المراجع بالمراجع المراجع المراجع المراجع بالمراجع بالمراجع المراجع المراجع بالمراجع بالمراجع بالمراجع بالمراجع المراجع بالمراجع المراجع المراجع المراجع بالمراجع بالمراجع بالمراجع المراجع بالمراجع المراجع بالمراجع بالمراجع المراجع المراجع المراجع المراجع المراجع المراجع بالمراجع بالمراجع المراجع بالمراجع المراجع بالمراجع بالمراجع با

Article 113

- 1. $(1, \dots, 1) = (1, \dots, 1) =$

- 4. $(t_1, t_2, \dots, t_{n-1}) = (t_{n-1}, t_{n-1}) + (t_{n-1}, t_{n-1}) +$

- 6. A set of the set of
- $7. \qquad \dots \qquad \dots \qquad \boxtimes q_1 \dots \dots \qquad \boxtimes q_{n-1} \dots \qquad \boxtimes q_{n-1} \dots \qquad \boxtimes q_{n-1} \dots \qquad (q_{n-1}) q_{n-1} \dots$

الان المعني المعني

Article 117

and the second second

Article 118

- (1) $(1) \quad (1) \quad$

Chapter 10 Party Committee

Article 119

 $\begin{array}{c} \mathbf{w}_{1} = \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{w}_{2} \mathbf{w}_{1} \mathbf{w}_{1} \mathbf{w}_{2} \mathbf{$

Article 120

- (1) (1) = (1 + 1) + (1

- $(4) \qquad (4) \qquad (k + i_{||} + j_{||} + j_$

- $(\mathbf{r}_{\mathbf{r}_{1}}) = t_{\mathbf{r}_{2}} + t_{\mathbf{r}_{1}} + \dots + t_{\mathbf{r}_{k}} + t_{\mathbf{r}_{k}} + \mathbf{r}_{\mathbf{r}_{k}} + \dots + \mathbf{r}_{k} + \dots + \mathbf{r}_{k} = \mathbf{r}_{k} + \mathbf{r}_{k}$

 $\begin{array}{c} & \left\langle \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{3}, \mathbf{v}_{4}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v$

Article 126

الاست من برايان و المحمد المحمد الله و المحمد المحمد المحمد الله و المحمد المحمد المحمد المحمد المحمد المحمد ال المحمد محمد المحمد ال المحمد المحمد

Article 127

 $\begin{array}{c} \mathbf{A} \left(\mathbf{x}_{1}, \dots, \mathbf{x}_{n} \right) = \left(\mathbf{x}_{1}, \dots, \mathbf{x}_{n$

 $\frac{1}{2} \left[\frac{1}{2} \left[\frac{1}{2}$

and a second construction of a grad product product product product product product product product and the second product product of the second product product of the second product product

Article 128

A set a set a set of a

Article 130

الديني المحالي المحالي المحالي المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية المحالية محالي المحالية المحالي

Section 2 Independent Directors

Article 131

Article 132

Article 133

A. when a transformed a second second

Article 134

منابعة محمل المربعة بحديد بالمربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة المربعة الم منابعة المربعة بالمربعة بالمربعة المربعة منابعة المربعة ا

Section 3 Board of Directors

Article 136

in a serie provide series a series a series and series and series and series and series and series and series a

Article 137

 $(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v$

Article 138

 $= \mathbf{v}_{\mathbf{x}} \cdot \mathbf{v}_{\mathbf{x}}$

- $(1) \quad \mathbf{x} = \mathbf{x}_{1} \cdots \mathbf{x}_{k} + \mathbf{z}_{k} \cdots \mathbf{x}_{k} + \mathbf{z}_{k} \cdots \mathbf{z}_{k} + \mathbf{z}_{k} \cdots \mathbf{z}_{k$

- (5) \ldots 1, \ldots k, 1, \ldots k, 1, \ldots ;
- (6) \ldots 1_{1} \ldots 1_{2} \ldots 1_{2}
- $(7) \quad \ldots \quad \mathbf{1}_{[\mathbf{x}_{1}]} \quad \ldots \quad \mathbf{1}_{[\mathbf{x}_{1}]} \quad \ldots \quad \mathbf{1}_{[\mathbf{x}_{1}]} \quad \mathbf{1}_{\mathbf{x}_{1}} \quad \mathbf{1}_{\mathbf{x}_{2}} \quad \ldots \quad \mathbf{1}_{[\mathbf{x}_{n}]} \quad \mathbf{1}_{\mathbf{x}_{n}} \quad \mathbf{1}_{[\mathbf{x}_{n}]} \quad \mathbf{1}_{[\mathbf$
- $(8) \quad \ldots \quad \mathbf{I}_{1} \quad \ldots \quad \mathbf{v}_{n-1} \quad \mathbf{v}_$
- $(9) \quad \blacksquare_{x} \lor_{x} \lor_{x}$

- $(10) \quad (10) \quad$

- (14) \ldots 1 \ldots 1
- (16) \ldots t_{n} t_{n} t_{n} \ldots t_{n} $t_{$
- $(17) \quad \sum_{j=1}^{n} \sum_{j=1}^{$
- (18) (1

- الجان التي المراجعة بالمركزة والتركية والتركية التي ووالتركية التركية التركية التركية والتركية التركية التركية الجانية
- $\| \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{1} \cdot \mathbf{x}_{2} \cdot \mathbf{x}_{2$
- ایک دولت کار ایک ایک در در در در محکوم دولت از در محکوم کرد. میکند میکند میکند و کرد و کرد و کرد و کرد و کرد ا ایک دولت کار
- we want we want a straight of the way of the states of the

المنظم معرفة المعرفة المعرفة المنظم المن المنظم المنظم

Article 139

Article 140

 $= \cdots = \mathbf{W}_{i} + \mathbf{v}_{i} + \mathbf{$

 $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k$

Article 142

- $(4) \quad , \quad \mathbf{t} \quad , \quad \mathbf{v} \quad , \quad \mathbf{t} \quad \mathbf{t$
- (5) \ldots $(1, \ldots, 1)$ \ldots $(1, \ldots, 1)$ \ldots (1, 1) \ldots (1, 1) (1, 1) (1, 1) \ldots (1, 1)

- (8) $= \frac{1}{1} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{1} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \frac{1}{1} \sum_{k=1}^{\infty} \sum_{k=1}^{$

 $\begin{array}{c} (\mathbf{x}_{1},\mathbf{x}_{2},\mathbf{x}$

Article 144

 $(\mathbf{z}_1, \dots, \mathbf{z}_k, \mathbf{U}_{\mathbf{x}_k}, \mathbf{U}_{\mathbf{x}_k},$

Article 145

 $= \sum_{i=1}^{n} \sum_$

من محمد محمد محمد من حمد المحمد ولا محمد ولا المحمد ولا م المحمد ولا محمد ولا المحمد ولا م ولا محمد ولا

Article 146

 $\mathbf{A}_{1,1}, \mathbf{x}_{1,1}, \dots, \mathbf{t}_{n-1}, \mathbf{x}_{n-1}, \mathbf$

- (2) <u>, t</u>, <u>,</u> <u>,</u> <u>,</u> <u>,</u> <u>,</u>
- $(3) \quad \textcircled{3} \quad \textcircled{1} \quad (3) \quad \textcircled{1} \quad (3) \quad ($
- (5) $(f_{1}, f_{2}, f_{3}, f_{4}, f_{4}, f_{5}, f_$

 $\begin{array}{c} (1,2,1) \prod_{i=1}^{n} (1,2) \\ (1,2) \prod_$

Article 148

(1, 1) = (1, 2) = (

n a constant la serie de la La serie de la s

 $A_{i} = \langle \phi_{i}, \phi_{$

Article 149

, δε προγραφείζεται βατο που έταν στο προβολογια το τροπολογία δο έχου που δελοπου δα βραγια στο βαλουρου του - Εχουπου έταν στο που έταν το τένα στημείας με του το έταν στο προγραφικό το μου τη προσποιού του που έταν στο δελογια το μου έταν στά πολο πο βαζητέταν που προβολικό το προσποιού προβολογια.

Article 150

معرف من معرف من معرف معرف من معرف من من من معرف من من معرف من معرف من معرف من معرف من معرف من من معرف معرف من معرف معرف من معرف من مع

Article 151

مراجع میں اور ایک دیکر اور دیکر میں ایک دیکر میں دیکر میں دیکر میں اور کی کہ دیکر میں اور دیکر کھی کی کہ کہ می ایک دیکر میں اور ایک دیکر ایک دیکر میں ایک دیکر میں ایک دیکر میں ایک دیکر میں اور کی کہ اور ایک دیکر کھی دیکر م

 $\begin{array}{c} (\mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3}, \mathbf{x}_{3$

 $\begin{array}{c} \left\langle \left\langle \left\langle x\right\rangle \right\rangle = \left\langle \left\langle x\right\rangle \right\rangle + \left\langle x\right\rangle + \left$

 $(\mathbf{r}_{1}, \mathbf{r}_{2}, \dots, \mathbf{r}_{n}, \mathbf{r}_{n},$

Article 153

- (1) t , t
- (2) \mathcal{A}_{1} , \mathcal{A}_{1} , \mathcal{A}_{2} , \mathcal{A}_{1} , \mathcal{A}_{2} , \mathcal{A}_{1} , \mathcal{A}_{2} ,
- (4) ..., ..., ..., ..., ..., ...;

Article 154

 $\begin{array}{c} & \left\{ \begin{array}{c} \left\{ \left\{ x \in \left\{$

Chapter 12 Secretary to the Board of Directors

Article 155

Article 156

- (1) $(1) \quad (1) \quad$
- (2) $\mathbf{L}_{\mathbf{x}} = \mathbf{L}_{\mathbf{x}} = \mathbf{L}_{\mathbf{x}} + \mathbf{L}_{\mathbf{x}$

- (5) $\mathbf{w}_{\mathbf{r}}$, $\mathbf{w}_{\mathbf{r}}$, $\mathbf{v}_{\mathbf{r}}$,
- (6) $\mathbf{1}_{[\mathbf{A}]}$, $\mathbf{v}_{\mathbf{A}}$, $\mathbf{k}_{\mathbf{A}}$, $\mathbf{j}_{\mathbf{A}}$, $\mathbf{v}_{\mathbf{A}}$, $\mathbf{i}_{\mathbf{A}}$,

the second secon

- (6) $\dots \ i_{X} \dots \dots \ i_{X} \dots \ i_{X} \dots \dots \ i_{X} \dots \ i_{X} \dots \dots \ i_{X} \dots \ i_$

- $(9) \qquad \dots \qquad t_{1} \qquad \dots \qquad t_{2} \qquad \dots \qquad t_{n} \qquad t_{n} \qquad \dots \qquad t_{n} \qquad t_{n}$
- (10) $\mathbf{y} = \mathbf{x} + \mathbf{y} + \mathbf{$

 $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 158

Chapter 13 General Manager

Article 159

 $(x_1, x_2, \dots, x_{n-1}, x_{n-1}, \dots, x_{n-$

 $(\mathbf{r}_{\mathbf{r}}, \mathbf{r}_{\mathbf{r}}) = (\mathbf{r}_{\mathbf{r}}, \mathbf{r}) = (\mathbf{r}_{\mathbf{r}}, \mathbf{r}) = (\mathbf{r}_{\mathbf{r}}, \mathbf{r}) = (\mathbf{r}_$

(A) Let (A) = (A) =

Article 161

 $[[e_1, e_2] + [e_1, e_2] + [e_1, e_2] + [e_2, e_3] + [e_3, e_4] + [e_4, e_4] + [e$

- $(1) \quad (1) \quad (1)$
- (2) $t_{1} \cdots t_{k} \cdots \cdots t_{k} \cdots t_{k}$
- $(3) \quad (1) \quad (1)$
- $(4) \quad t \quad (1) \quad$
- (6) $\mathbf{r}_{1} \cdot \mathbf{r}_{1} \cdot \mathbf{r}_$
- (7) (1, 1) (1, 2)
- (8) $\prod_{i=1,\dots,n} t_{i_1,\dots,i_{n-1},\dots,n} t_{i_{n-1},\dots,n} \cdots t_{i_{n-1},\dots,n} t_{i$
- (9) $(1, \dots, 1) \in \mathbb{R}^{n} \times \mathbb{R$
- $(10) \quad (10) \quad$

a for a particular conservation of the conservation of a space of the conservation of

Article 162

= (1 + 1) + (1

no na serie de la serie de la serie serie serie serie de la serie No serie d'ante de la serie de la serie

- ν Μα Κατιμα αντά στη το το γαμικό για τη Μαατι
- (1) $\ldots t_{\mathbf{r}_{1}}, \ldots, t_{\mathbf{r}_{1}}, \ldots, t_{\mathbf{r}_{n-1}}, \ldots, \ldots, t_{\mathbf{r}_{n-1}}, \ldots, \ldots, t_{\mathbf{r}_{n-1}}, \ldots, \ldots,$

Article 164

 $\frac{1}{2} = \frac{1}{2} \left[\frac{1}{2} + \frac{1$

Chapter 14 General Counsel

Article 165

یوانی روانی این ایرانی ایرانی ایرانی این میکونی این میکونی این ایرانی ایرانی ایرانی میرانی ایرانی ایرانی ایرانی ایرانی ایرانی ایرانی ایرانی ایرانی میکونی ایرانی ایرانی ایرانی ایرانی ایرانی ایرانی ایرانی ایرانی ایران ایرانی ایرانی

 $\begin{array}{c} \left\langle x_{1},x_{2},x_{3},x_{4},x_{5},x$

Article 166

Chapter 15 Board of Supervisors

Section 1 Supervisors

Article 167

Article 168

 $\mathbf{A}_{\mathbf{x}} \dots \mathbf{x}_{\mathbf{y}} \dots$

Article 169

Article 170

Adama a provide a second secon

Article 171

A a property of the providence of the terms of the second productions in the second se

Article 172

Article 173

المراجعة الم المراجعة الم المراجعة الم

Section 2 Board of supervisors

Article 174

the second product of the second second

 $\mathbf{W}_{\mathbf{r}} = \mathbf{W}_{\mathbf{r}} =$

Article 176

المحمد من من المحمد من من المحمد من والمنتخب من والتركيم والمحمد والمركم من المحمد من المحمد والمركم من المحمد المحمد من من من المحمد من من محمد والمحمد من من من من المحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد وال المحمد من من من المحمد من من محمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والمحمد والم

Article 177

- $2. \qquad \mathbf{1}_{1}, \mathbf{1}_{2}, \mathbf{2}_{3}, \mathbf{2}_{4}, \mathbf{2}_{5}, \mathbf{1}_{5}, \mathbf{1}_{5}, \mathbf{2}_{5}, \mathbf{2}_{5},$

- 5. $\sum_{\mathbf{k} \in \{1, \dots, k\}} \left[\left\{ \left\{ 1, \dots, k \in \{1, \dots, k\} \right\} \right\} \right\} = \left\{ \left\{ 1, \dots, k \in \{1, \dots, k\} \right\} \right\} = \left\{ \left\{ 1, \dots, k \in \{1, \dots, k\} \right\} \right\} = \left\{ 1, \dots, k \in \{1, \dots, k\} \right\} = \left\{ 1, \dots$

- 8. $[1 \dots 2] [1] = [1 \dots 2] [$
- 10. $A_{1}, A_{2}, A_{3}, A_{$

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

المربقة المربقة

Article 179

Article 180

 $\mathbf{S}_{\mathbf{x}} = \left[\mathbf{s}_{\mathbf{x}} + \mathbf{s}_{\mathbf{x}$

Article 181

المعالية ال المعالية الم

Article 182

 $\mathbf{A}_{1}, \mathbf{y}_{1}, \mathbf{x}_{2}, \dots, \mathbf{t}_{n-1}, \mathbf{y}_{n-1}, \dots, \mathbf{y}_{n-1}, \mathbf{t}_{n-1}, \mathbf{t}_{n-1}, \mathbf{t}_{n-1}, \dots, \mathbf{y}_{n-1}, \mathbf{t}_{n-1}, \mathbf{t}$

- (1) t, \ldots , t, t, t, t, \ldots , \ldots , t, t;
- (2) $t_1, \ldots, t_n, \ldots, t_n, \ldots, t_n, \ldots;$

ار بالای این میلی از میکند. از میکند بالی دیمی بیکی در از میکند این کند این کند این کند از کند در الایک کند. میکند از میکند میلی میلی (یک) مکل میکند در از میکند این کند میکند این کند. میکند این کند میلی از کند که میک

Article 184

Chapter 16 Qualifications and Obligations of the Company's Directors, Supervisors and Other Senior Management

Article 185

 $\mathbf{A}_{\mathbf{y}}, \dots, \mathbf{v}_{\mathbf{x}}, \dots, \mathbf{v}_{\mathbf{x}}, \mathbf{v}_{\mathbf{y}}, \mathbf{v}_{\mathbf{y}$

- 1. $\underbrace{\mathbf{W}}_{\mathbf{x}^{\prime}} = \underbrace{\mathbf{W}}_{\mathbf{x}^{\prime}} = \underbrace{\mathbf$
- 2. $\sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
- 3. $\begin{array}{c} \mathbf{y}_{1} \dots \mathbf{w}_{n} \mathbf{y}_{n} \dots \mathbf{v}_{n} \mathbf{y}_{n} \mathbf{y}_{n} \dots \mathbf{v}_{n} \mathbf{y}_{n} \mathbf{y}$
- 4. $(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3},$
- 5. $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n}$
- $6. \qquad \mathbf{y}_{1} \ldots \mathbf{w}_{2} \ldots \mathbf{w}_{2} \ldots \mathbf{x}_{1} \ldots \mathbf{x}_{2} \ldots \mathbf{x}$
- 7. $\sum_{k=1}^{\infty} \sum_{k=1}^{\infty} \sum_{k=1}^{\infty}$
- 8. $\begin{array}{c} \mathbf{S}_{1} \\ \mathbf{S}_{2} \\$

- 9. ...-. J ____;

ار می میل این کرد میکند. در این میکند از می میکند از میکند میکند میکند میکند از میکند میکند. مرکز میکند میکن

Article 187

 $= \frac{1}{2} \left\{ \frac{1}{2}$

- 3. $(\sum_{i=1}^{n} (1 + \sum_{i=1}^{n} (1 +$
- 4. $(\mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{3}, \mathbf{w}_{1}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{2}, \mathbf{w}_{1}, \mathbf{w}_{2}, \mathbf{w}_{2},$

Article 188

= (x + y) + (x + y) + (x + y) + (y + y) + (y

Article 189

د الا محمد : بر الا محمد العراب الذي محمد المراب الذي الذي الذي الذي المراب المحمد المحمد المحمد المحمد محمد المحمد المحمد ا بر الا محمد المراب الذي الذي محمد المراب الذي الذي الذي الذي الذي المحمد المحمد المحمد المحمد محمد المحمد الم المحمد المحمد : بر المحمد :

- 3. $= \sum_{i=1}^{n} \frac{1}{2} \left[\frac{$

- 9. $(1, 2) \in A_{2} = A_{2} =$
- 10. $\dots \times k = (k + 1) (k + 1)$

- $14. \quad (x_1, y_1, y_2, y_$
 - (1) **, ... ! ! ! !**

 - $(3) \qquad , \mathbf{1}_{\mathbf{y}}, \mathbf{t}_{\mathbf{y}}, \mathbf{y}, \mathbf{y},$

 $[\mathbf{x}_1, \dots, \mathbf{y}_{n+1}, \mathbf{x}_{n+1}, \dots, \mathbf{x}_{n+1}, \dots, \mathbf{x}_{n+1}, \dots, \mathbf{x}_{n+1}, \mathbf{x}_{n+1}, \dots, \mathbf{x}_{n+1}, \dots$

- 2. (1), (1)
- 3. (1) , (2), (2), (1), (2), (2), (3), (1), (2), (3)
- 4. (1, 1) (1, 2) (1, 2) (2) (3) (2) (1, 2)
- 5. (4)

Article 191

Article 192

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Article 193

(x,y,z,y) = (x,y) + (x,y) + (y,y) +

 $\mathbf{A}_{\mathbf{x}} \dots \mathbf{x}_{\mathbf{y}} \dots$

Article 194

Article 195

 $\mathbf{x}_{i} = \mathbf{x}_{i} + \mathbf{y}_{i} + \mathbf{y}_{i}$

Article 196

- 1. σ_{1} , σ_{2} , σ_{1} , σ_{2} , σ_{2} , σ_{3} , σ_{4} , σ_{2} , σ_{2} , σ_{3} , σ_{4} , σ_{5} ,
- 3. A second seco

Article 197

Approxite to the second second

 $\mathbf{A}_{\mathbf{p}} = \mathbf{1} + \mathbf{1} +$

- 1. \blacksquare
- 2. \mathbf{v}_{1} \mathbf{v}_{1} \mathbf{v}_{2} \mathbf{v}_{3} \mathbf{v}_{4} $\mathbf{v}_{$

Article 199

Article 200

n na da general de la calencia de la construcción de la Barra de la construcción de la general de la construcción La presente de la construcción de l A construcción de

- $1, \quad t = (t, t) = (t_1, \dots, t_k) = (t_1, \dots, t$
- 2. $(\mathbf{w}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{3}, \mathbf{v}_{3},$
- 3. It is the set of t
- 5. $t_1 = t_2 + t_1 + t_2 + t_2 + t_3 + t_4 + t$
- $6. \qquad \mathbf{k}_{1} \mathbf{t}_{1} \mathbf{t}_{2} \cdots \mathbf{t}_{k} \mathbf{t$

- 3. A splan we be a second strain the second splan second strain the second second splan second s
- 4. If $t_1, \ldots, t_k, \ldots, t_k$ and t_k and the term of the term of the term of the term of ter

- (1) $(1) \quad (1, \ell_{1}, \mathbf{k}_{1}, \ell_{2}, \ldots, \mathbf{k}_{1}, \ldots, \mathbf{k}_{2}, \ldots, \mathbf{k}_{n}, \ldots,$

 $(3) \qquad \mathbf{J} = \{\mathbf{y}_1, \dots, \mathbf{y}_{1}, \dots, \mathbf{y}_{1}, \dots, \mathbf{y}_{n-1}, \dots$

Article 202

1. $\mathbf{k} = [\mathbf{k} + \mathbf{k}] + [\mathbf{k} + \mathbf{k} + \mathbf$

2. $\mathbf{k} = \mathbf{k} = \mathbf{k}$

الدران ال في يكفي التعديد التاريخ والكو A يكفيكي المراجب من الدريك التكوير التركيب من التركيب في التركيب التكر التركيب التكوين = بين التكوين التكوين التكوير التكوير التكوير التكوير التكوير التكوير التكوير التكوير التكوير التركيب التركيب التكوير التكوير

د در بالای می ازد. بالای می بالای این این این بالای می بالد بالد می بالای می بالای می بالای می بالای این این د این این این می بالای می بالای می این این می این می بالد این می بالای این می بالای این می بالای این می بالای رو بالای می بالای می بالای می بالای این می بالد می بالد می بالای این می بالای می بالای می بالای بالای این می بال

Chapter 17 Financial Accounting System and Distribution of Profits

Article 204

, γεαταγραφικά μεταγραφικά του δαριατοριατικό του ματοριάτου του του του του διατοριατοριατικού του δαριατορια Το προσφεία το μεταγραφικά του δείστατα στο δεριατοριατοριατοριατικού του του διατοριδιατοριατοριατοριατορια δια

Article 205

in a state for the part of the second seco

Article 206

المريحية المريحية المريحية المريحية المريحية المريحية المريحية مريحية من مريحية المريحية من المريحية المريحية ا المريحية الم المريحية الم

Article 207

Article 208

 $\begin{array}{c} \mathbf{w}_{\mathbf{x}} = \mathbf{w}_{\mathbf{x}} \mathbf{u}_{\mathbf{x}} \mathbf{v}_{\mathbf{x}} + \mathbf{v}_{\mathbf{x}} \mathbf{v}_{$

Article 210

Article 211

 $(\mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{2}, \mathbf{v}_{1}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v$

Article 212

- 1. $\mathbf{v}_1 + \mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 + \mathbf{v}_4 + \mathbf{v}_5 + \mathbf{v}_5$

Article 213

 $\frac{1}{2} \left[\frac{1}{2} \left$

العديد المراحي التي المركبين والعديدي والعدائية المرحين محرين والعديد المرحية المرحية المرحين التركين عن العد المرحية المرحي المرحي

ne pre serve pre entre se entre serve s

 $= \frac{1}{25\%} = \frac$

Article 215

1. . . ;

2.

 $\begin{array}{c} \mathbf{A}_{1} & \ldots & \ldots & \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{2} \mathbf{A}_{1} \mathbf{A}_{2} \mathbf{A$

Article 216

المحمد من المحمد من من المن المحمد من الم المحمد من المحمد من المحمد من المحمد من المحمد من المحمد من محمد من المحمد من محمد من من المحمد المحمد من المحم

Article 217

ا با من المعالية من من الأرباع المعالية من من المع المن المن المعالية من من المعالية من معالية من من المعالية من من المعالية من من المعالية من من من المعالية من ا

and the second second and the second se

المحمد المحم المحمد المحمد

•••••••••••••••••••••••••••••••••••••		$\ldots, t_{\mathbf{A}}, \mathbf{I}_{-} t_{\mathbf{A}^{*}, \mathbf{A}} t_{-}, t_{-} \mathbf{M}$		
				.₩ I
, 🛯 , , , . 🕅 , 🖼	· · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u>,</u> ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	······································

Article 218

 $\underbrace{\mathbf{A}}_{\mathbf{x}} = \underbrace{\mathbf{a}}_{\mathbf{x}} \underbrace{\mathbf{b}}_{\mathbf{x}} \underbrace$

Article 219

المراجع من محمد المراجع من المراجع من المراجع من محمد من محمد من محمد المراجع من المراجع من المراجع من المراجع من من مراجع من محمد المراجع من المراجع من المراجع من محمد محمد من محمد المراجع من المراجع من المراجع من محمد م من محمد من محمد المراجع من المراجع من المراجع من محمد محمد من محمد المراجع من المراجع من المراجع من المراجع من من محمد من محمد المراجع من المراجع من المراجع من محمد محمد محمد من محمد المراجع من المراجع من المراجع من محمد الم

Chapter 18 Appointment of an Accounting Firm

Article 220

ار این میرد ده میرو ایم در از الله یک هم د کردند و در در در در ده میرو ده میرو در ده میرو این میرو ده د. از این میرو ده میرو ایم میرو ده در داران در هم محمد این دکتره از میرو این از میرو این میگرد. می آن می از این د

ne see an grade and an an state for the second state of the second state of the second state of the second stat An even and the second state of the second state of the second state of the second state of the second state of

Article 221

Article 222

 $\mathbf{A}_{1},\ldots,\mathbf{a}_{n},\mathbf{b}_{n},\ldots,\mathbf{b}_{n},\mathbf{b}_{n},\ldots,\mathbf{$

 $1, \quad \omega \in \{1, \dots, n\} := \{1, \dots, n\} := \{1, \dots, n\}, \dots := \{k, \dots, n\}, \dots := \{1, \dots, n\}$

- 2. $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum$
- $3. \qquad \text{as produced the set of t$

الد محاليا المحاليين بالحكرين في المحكونية المحاليات المحكومين بالمحكونية المحكونية المحكونية والمحكونية والمحك المحكونية المحالية المحاليات المحكونية المحكونية المحكونية المحكونية المحكونية المحكونية المحكونية المحكونية الم المحالية المحالية المحاليات المحاليات المحالية والمحكونية المحكونية المحكونية المحكونية المحكونية المحكونية الم

Article 224

المعلم معلم معلم المعلم الم المعلم المعلم

Article 225

n de la servicie de la constructura de la constructura de la diversión de la diversión de la constructura de la La devenicipante de la diversión

Article 226

المحمد المراجعة المراجعة المحمد والمراجعة المحمد المراجعة المحمد المحمد من محمد محمد والمحمد والمحمد والمحمد و محمد محمد المحمد المحمد والمحاصية المحمد والمحمد المحمد من المحمد محمد محمد محمد محمد محمد والمحمد محمد والمحمد محمد المحمد المحمد والمحمد والم

- (2) $\mathbf{k}_{1} \cdots \mathbf{k}_{n} \mathbf{k}_{n} \cdots \mathbf{k}_{n} \mathbf{k}_{n} \mathbf{k}_{n} \cdots \mathbf{k}_{n} \mathbf{k}_{n}$
 - $1, \qquad k_{i}, \ell_{i}, \ldots, \ell_{i}, \ldots, \ell_{i}, \ldots, \ell_{i}, \ell_{i},$
 - 2. $\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_{k=1}^{n}$

- - 2. $(\mathbf{x}_1, \mathbf{y}_2, \mathbf{y}_3, \mathbf{y}_3,$
 - 3. Alter production and a state of the second state of the second

 $(x_1, \dots, x_n) = x_1 + x_2 + x_2 + x_n +$

Article 227

در از محمد محمد الله محمد محمد الله محمد محمد الله محمد محمد المحمد المحمد المحمد المحمد المحمد المحمد محمد ال ال محمد محمد محمد الا محمد الا محمد المحمد محمد المحمد المحمد محمد محمد المحمد محمد المحمد محمد المحمد محمد الم محمد المحمد محمد المحمد المحمد المحمد المحمد المحمد محمد محمد المحمد محمد المحمد محمد المحمد محمد المحمد محمد ا

 $(1) \qquad (1) \qquad (1)$

 $1, \qquad \forall \ \mathbf{x}_{1}, \dots, \mathbf{y}_{l}, \mathbf{x}_{k}, \forall \dots, \mathbf{x}_{k}, \dots \neq \mathbf{y}_{l} \forall \dots \forall \mathbf{x}_{l} \forall \dots \forall \mathbf{x}_{l} \forall \dots \forall \mathbf{x}_{k} \forall \dots \neq \mathbf{y}_{l} \forall \mathbf{x}_{l} \forall \mathbf{x}_{l}$

Chapter 19 Merger, Division, Dissolution and Liquidation

Section 1 Merger and Division

Article 228

 $\begin{array}{c} \mathbf{A}_{1} = \mathbf{A}_{1} + \mathbf{A}_{2} + \mathbf{A$

Article 229

in a transmission of a strategy of the strategy of strategy of strategy of the strategy of strategy of strategy of the strategy of strat

 $\begin{array}{c} \mathbf{A}_{1}, \dots, \mathbf{y}_{n}, \mathbf{x}_{n} \in \{1, 2, \dots, 4\}, \quad \mathbf{y}_{n}, \mathbf{x}_{n} \in \{2, 2, \dots, 1\}, \\ \mathbf{y}_{n}, \dots, \mathbf{y}_{n}, \mathbf{x}_{n} \in \{1, 2, \dots, 4\}, \quad \mathbf{y}_{n}, \mathbf{x}_{n} \in \{1, 2, \dots, 1\}, \quad \mathbf{y}_{n} \in \{1, 2, \dots, 1\}, \quad \mathbf$

الیالی این محمد میکند این این این این میکند میکند. این این میکند میکند و دارد ا<mark>لکی</mark> این میکند و دارد میکند میکند. در این محمد میکند میکند میکند میکند میکند میکند میکند میکند.

Article 230

no no βor en la construcción de la La construcción de la construcción d

Article 231

Section 2 Dissolution and Liquidation

Article 232

- $(1) \quad \mathbf{A}_{\mathbf{a}} = \mathbf{a}_{\mathbf{a}} = \mathbf{a}_{\mathbf{a}} = \mathbf{a}_{\mathbf{a}} = \mathbf{a}_{\mathbf{a}} + \mathbf{a}_{\mathbf{a}} = \mathbf{a}_{\mathbf{a}} + \mathbf{a}_{\mathbf{$

- (4) $(\mathbf{x}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1, \mathbf{y}_2, \mathbf{y}_1, \mathbf{y}_1,$
- (6) $\begin{array}{c} & & \\$

Article 233

Article 234

 $\frac{1}{10} = \frac{1}{10} \left[\frac{1}{10} + \frac{1}{10}$

الاندينية من معرفة المراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع والمراجع وال المراجع والمراجع والم

 $\begin{array}{c} \left\langle \mathbf{x}_{1} \mathbf{x}_{2} \mathbf{x}_{2} \mathbf{x}_{2} \mathbf{x}_{2} \mathbf{x}_{1} \mathbf{x}_{2} \mathbf$

 $\frac{1}{2} \left\{ \frac{1}{2} \left$

 $\frac{1}{2} \left[\frac{1}{2} \left$

Article 236

- $(1) = \frac{1}{1^{\kappa}} \mathbf{1}_{\lambda} \mathbf$
- (2) \mathbf{r} , \mathbf{r} ,

- $(6) \quad t_{\mathbf{x},\mathbf{y}} \cdots \mathbf{y} \quad \mathbf{y} \quad$
- $(7) \quad \sum_{\lambda \in [\lambda_1]} \sum_{\lambda \in [$

Article 237

مینه این از البی و و کار در از این هم میرون و به ایوانی اور این در میرون و به ایوانی از این از میرون و این میرا ایوانی از البی و روانی باری این این میرونی و بیرونی و بیرونی و ایوانی از این ایر ایر ایر ایر ایر ایر ایر ایر ای ایرونی و ایرونی و بیرونی و بیر

اند الدين المردية وينتني والله المردية الألوبينية (ترييبية عنا المردية العلمي المردية المردية المردية العلمي ا عام المرجيع المردية الدين والله المردية المراكبة المراكبة منذ المردية المردية المردية المردية المردية العلمي الم مناطق المردية ا

حاف بیجان در بینی این با جار با ایجان با حال با بیجان میناند. در این به والی کیلیے ایک کیلیے ایک کیلیے اور با ایک بینان به محکولات میں در این با حال با محکول میں به میں به میں ایک کیلیے ایک ایک با با بیک بی بی بیک کیلیے ا ایک بیک ایک ایک ایک بیک در ایک کیلیے ایک

in a supplication of the state of the state

Article 239

Article 240

المراجع بالمراحية المراحية المراجعة منتاب المحمد من المراجعة من المراجعة المراجعة المراجعة المراجعة المراجعة ال المراجعة الم

المعني من المعني ال المعني المعني

 $\sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i$

Chapter 20 Amendment to Articles of Association

Article 241

Article 242

- $(2) \qquad (2) \qquad (2)$

Article 244

en en la la complete de la seconda de la La complete de la complete de la seconda d

 $= \sum_{i=1}^{N} \sum_$

- (1) $(1) \quad (1) \quad$
- (2) $(2) \qquad (2) \qquad$

Article 245

Chapter 21 Notice

Article 246

- (1) *t* , , *t* ;
- (2) , . . .;
- $(4) \quad \text{at } x = x = y = \frac{\mathbf{W}}{\mathbf{W}}, \quad \text{tr}_{\mathbf{W}} = \frac{\mathbf$

Chapter 22 Settlement of Disputes

Article 250

- (1) $(1) \qquad (1) \qquad$

المحمد المراجعة المحمد الم المحمد المحم المحمد المحم المحمد المحمد

الارام مالي مالي المالي الم مالية المالي مالي المالي الم

(2) $(2) \quad (2) \quad$

 $\begin{array}{c} \mathbf{v}_{1} = \mathbf{v}_{1} \cdot \mathbf{k}_{1} \cdot \mathbf{k}_{2} \cdot \mathbf{k$

Chapter 23 Supplementary Articles

Article 251

Definition

- $(3) \qquad A_{\dots,\lambda} = \left\{ \begin{array}{c} & & \\ & &$

Article 252

 $= \mathbf{A}_{\mathbf{x}} \cdot \mathbf{A}_{\mathbf{x}} + \cdots \cdot \mathbf{A}_{\mathbf{x}} \cdot \mathbf{x}_{\mathbf{x}} \cdot \mathbf{y} \cdot \mathbf{z}_{\mathbf{x}} \cdot \cdots \cdot \mathbf{z}_{\mathbf{y}} \cdot \mathbf{z}_{\mathbf{y}} \cdot \mathbf{z}_{\mathbf{x}} \cdot \mathbf{z}_{\mathbf{y}} \cdot \mathbf{z}_{\mathbf{x}} \cdot \mathbf{z}_{\mathbf{y}} \cdot \mathbf{z}_{\mathbf{x}} \cdot \mathbf{z}_{\mathbf{y}} \cdot \mathbf{z}_{\mathbf{z}} \cdot \mathbf{z}_{\mathbf{z}$

Article 253

 $(\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_{1}, \mathbf{x}_{n}, \mathbf{x}_{n}, \mathbf{A}_{n+1}, \dots, \mathbf{A}_{n+1}, \mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) + (\mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_{1}, \mathbf{x}_{2}, \dots, \mathbf{x}_{n}) = (\mathbf{x}_{n}, \mathbf{x}_{n}) + (\mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_{n}, \mathbf{x}_{n}) + (\mathbf{x}_{n}, \mathbf{x}_{n}) = (\mathbf{x}_$

Article 254

, A skipter A..., skipter A. (1) and the state of state of the state

Article 255

 $(\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3, \mathbf{x$